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Abstract

This paper employs the continuous-time analogue Hopfield neural network to compute the temperature distribution in forward heat
conduction problems and solves inverse heat conduction problems by using a back propagation neural (BPN) network to identify the
unknown boundary conditions. The weak generalization capacity of BPN networks is improved by employing the Bayesian regulariza-
tion algorithm. The feasibility of the proposed method is examined in a series of numerical simulations. The results show that the pro-
posed neural network analysis method successfully solves forward heat conduction problems and is capable of predicting the unknown
parameters in inverse problems with an acceptable error.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In forward heat conduction problems the heating charac-
teristics, the boundary conditions and the initial conditions
of a body are known and are used to establish the internal
temperature field. Conversely, in inverse heat conduction
problems (IHCPs), experimental temperature measure-
ments are taken at various points in the interior of a body
and are used to estimate the unknown boundary conditions
existing at the external surface. IHCPs are mathematically
ill-posed in the sense that the existence, uniqueness and sta-
bility of their solutions cannot be assured [1]. IHCPs are
generally solved using some form of numerical technique.
Classical approaches include space marching [2,3] the single
future time step method [1, pp. 115–119], the function speci-
fication method [4,1, pp. 119–134], the regularization
method [1, pp. 134–145] and the trial function method [1,
pp. 145–148]. Since the 1970s, computer science and tech-
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nology have advanced rapidly and hence contemporary
researchers generally solve IHCPs using numerical methods
such as the finite element method [5–7], the finite different
method (FDM) [8], the boundary element method [9,10],
sequential method [11], Kalman filter method [12,13] and
Genetic algorithm [14].

In examining forward heat conduction problems, this
study commences by developing the governing equations
for various one- and two-dimensional heat conduction
cases and then describes the continuous-time analogue
Hopfield neural network (CHNN) scheme. The differential
equations of the CHNN are derived and correlated with the
governing equations of the conduction problems. The
framed Hopfield-type neural network is then applied to
solve a number of conventional, and rather more compli-
cated, one- and two-dimensional heat conduction prob-
lems. The accuracy of the CHNN solutions is verified via
comparison with the exact solutions and the FDM results.

The rapid development of artificial neural network tech-
nology in recent years has led to an entirely new approach
for the solution of IHCPs [15–18,36]. Neural networks are
artificial intelligence systems which mimic the biological
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Nomenclature

BPN back propagation neural
Ci amplifier input capacitance of ith neuron
CHNN Continuous-time analogue Hopfield neural net-

work
dj desired output of jth neuron
Ii external input to ith neuron
L thermal layer thickness
M,N total number of spatial nodes
q heat flux
Ri resistance of ith neuron
t time (continuous)
tf final time
T temperature
T0 uniform initial temperaturebT i difference between temperature of ith neuron

and its neighbor
ui internal state of ith neuron
�w1; �w2; �w3 sub-matrices of W
wij connection strength between neurons j and i

W coefficient matrix
~x; ~y dimensionless axial coordinate

~xu; ~yu measurement location
yj output of jth neuron
a thermal diffusivity
b steepness of sigmoid function
dt sampling interval time
n1, n2 object function parameters
hk bias of neural network
j thermal conductivity
q total shunt capacitance
u(�) neuron activation function
W coefficient matrix
Wj continuous functions of one variable
W1, W2 sub-matrices of W
o null matrix

Subscripts

i, j indices

Superscripts

T transpose of matrix
� dimensionless value
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processes of a human brain by using non-linear processing
units to simulate the functions of biological neurons. The
processing units (nodes) are fully interconnected by joints
of invariable strength which mimic the synaptic behavior
of the human brain. The units are multi-dimensional, self-
organizing, fuzzy and self-learning capabilities. Neural net-
works can be applied to the solution of IHCPs by training
the network with multiple samples of temperature distribu-
tion data obtained from forward heat conduction problems
and adjusting the weights of the individual nodes such
that the actual network outputs closely approximate the
target values. The fully trained neural network can then
predict an unknown output for any arbitrary input by
applying the network weights established during the train-
ing stage.

The following sections perform a forward analysis using
a neural network. Two inverse heat conduction problems
are then considered to confirm the validity of the proposed
method. The first problem concerns a one-dimensional
cylindrical coordinate system, while the second involves a
two-dimensional rectangular coordinate system. In both
cases, the CHNN scheme is used to perform the forward
heat conduction analysis. The results of the forward analy-
sis are used as training data for a three-layered back propa-
gation neural (BPN) network designed to solve IHCPs with
different heat profiles. The BPN network is trained using
eight different algorithms and the relative performance of
each algorithm is examined in terms of its convergence rate
and the accuracy of the final solutions. These algorithms
include: Conjugate gradient back propagation with resilient
back propagation (CRB) [19], gradient descent with
momentum and adaptive learning rate back propagation
(GMB) [20], conjugate gradient back propagation with
Fletcher–Reeves updates (CBF) [21], scaled conjugate gra-
dient back propagation (SCB) [22], quasi-Newton back
propagation (QNB) [21, p. 242], one-step secant back propa-
gation (OSB) [23], conjugate gradient back propagation
with Powell–Beale restarts (CBP) [24] and Levenberg–
Marquardt back propagation (LMB) [20]. To overcome
the weak generalization capacity of general back propaga-
tion algorithms when applied to non-linear function
approximations, and to take account of the uncertain noise
inherent in the current IHCPs, the network is also trained
using the Bayesian regularization scheme. The performance
of the network trained using the best training algorithm is
then compared with that trained using the Bayesian regular-
ization approach.

2. Formulation of forward heat conduction problems

This study applies the CHNN model to solve the
temperature distribution field of various forward heat
conduction problems expressed in either a one-dimen-
sional Cartesian coordinate system, a cylindrical coordi-
nate system or a two-dimensional rectangular coordinate
system.

2.1. One-dimensional Cartesian coordinate system

Initially, this study constructs the homogeneous differen-
tial equation for the one-dimensional heat conduction case.
It is assumed that the one-dimensional bar (in Fig. 5a top
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left) or finite plate (in Fig. 5b bottom right) has a thermally
insulated surface at x = L and that a time-varying heat flux,
q(t), acts at x = 0. The boundary and initial conditions are
as shown. The corresponding system state equations can be
expressed in dimensionless form as

1

a
oeT
o~t
¼ o

2eT
o~x2

; 0 6 ~x 6 L; ~t > 0; ð1aÞeT ð~x; 0Þ ¼ T 0; 0 6 ~x 6 L; ð1bÞ
oeT
o~x
¼ �~qð~tÞ; ~x ¼ 0; ~t > 0; ð1cÞ

oeT =o~x ¼ 0; ~x ¼ L; ð1dÞ

whereeT ¼ ðT � T 0Þ=ðq0L=jÞ; ~q ¼ q=q0; ~x ¼ x=L;

~t ¼ at=L2; L ¼ 1: ð1eÞ
2.2. One-dimensional cylindrical coordinate system

In Fig. 1a, it is assumed that the one-dimensional hollow
cylinder has a thermally insulated surface at r = b and that
the time-varying heat flux, q(t), acts at the inner surface,
r = a. The boundary and initial conditions are as shown.
The corresponding system state equations can be expressed
in dimensionless form as [25]

1

a
oeT
o~t
¼ o2eT

o~r2
þ 1

~r
oeT
o~r
; a 6 ~r 6 b; ~t > 0; ð2aÞ

eT ð~r; 0Þ ¼ T 0; a 6 ~r 6 b; ð2bÞ

oeT
o~r
¼ �~qð~tÞ; ~r ¼ a; ~t > 0; ð2cÞ

oeT
o~r
¼ 0; ~r ¼ b; ð2dÞ

whereeT ¼ ðT � T 0Þ=ðq0L=jÞ; ~q ¼ q=q0; ~r ¼ r=L;

~t ¼ at=L2; L ¼ b� a ¼ 1: ð2eÞ
Fig. 1a. 1-D boundary and initial conditions for hollow cylinder.
In Eqs. (1e) and (2e), T0 is the uniform initial temperature,
a the thermal diffusivity, j the thermal conductivity, q0 the
nominal value of the surface heat flux and ~qð~tÞ the dimen-
sionless heat flux. Note that for convenience, the super-
script (�) is omitted throughout the remainder of this
paper.

2.3. Two-dimensional rectangular coordinate system

This study also establishes the homogeneous differential
equation of heat conduction for a two-dimensional rectan-
gular system. In this case, the temperature distribution
involves two heat flux inputs, q1(t) and q2(t), at the bound-
aries. Fig. 1b illustrates the boundary and initial conditions
of the internal heat conduction for this two-dimensional
case. In dimensionless form, the corresponding system of
equations is given by [26]

oT
ot
¼ o2T

ox2
þ o2T

oy2
; 0 6 x 6 xu; 0 6 y 6 yu; t > 0; ð3aÞ

T ðx; y; 0Þ ¼ T 0; 0 6 x 6 xu; 0 6 y 6 yu; ð3bÞ
oT
ox
¼ �q1ðtÞ; x ¼ 0; 0 6 y 6 yu; t > 0; ð3cÞ

oT
oy
¼ 0; 0 6 x 6 xu; y ¼ 0; t > 0; ð3dÞ

oT
ox
¼ 0; x ¼ xu; 0 6 y 6 yu; t > 0; ð3eÞ

oT
oy
¼ �q2ðtÞ; 0 6 x 6 xu; y ¼ yu; t > 0; ð3fÞ

where T0 is the uniform initial temperature and q1(t) and
q2(t) are the two heat flux inputs.
Fig. 1b. 2-D boundary and initial conditions.



Fig. 2a. Basic Hopfield neural network connectivity circuit diagram.

S. Deng, Y. Hwang / International Journal of Heat and Mass Transfer 49 (2006) 4732–4750 4735
2.4. Hopfield neural network

The Hopfield continuous-time dynamic neural network
constructed from n dynamic neural units can be described
by the following non-linear differential equations [27,28]:

Ci
duiðtÞ

dt
¼
Xn

j¼1
i6¼j

wijV jðtÞ �
uiðtÞ
Ri
þ I iðtÞ; i ¼ 1; 2; . . . ; n;

ð4aÞ
yiðtÞ ¼ uðuiðtÞÞ; i ¼ 1; 2; . . . ; n; ð4bÞ

where ui is the internal state of the ith neuron, 1=Ri ¼Pn
j¼1wij þ 1=qi, 1/Rij = wij, wij is the strength of the connec-

tion between neurons j and i, yj is the output of the jth neu-
ron, u(�) is the neuron activation function, Ii is the external
input to neuron i, and yi is the output signal from each neu-
ron, including the ith neuron.

The neuron’s output, i.e. yi = u(ui), is a non-decreasing
function of the activation level. Hopfield network imple-
mentations generally employ a sigmoid activation function
such as the tanh function or a piecewise linear approxima-
tion to a sigmoid. The hyperbolic tangent sigmoid function
has the form:

uðuiÞ ¼ tanhðbuiÞ ¼ ðebui � e�buiÞðebui þ e�buiÞ�1
: ð5Þ

This sigmoid function is rotationally symmetric about
the origin of the coordinate axes, and asymptotically
approaches limiting points of (1, 1) and (�1,�1). The
parameter b in the sigmoid function is adjustable according
to the non-linearity of the problem. In this paper, a value of
b = 1/2 is used in the simulations [29].

In this study, the numerical solutions to the two-dimen-
sional forward heat conduction problems are obtained
using the CHNN approach. The detailed derivations of this
technique are presented in Appendix A. It can be shown
(see Appendix A) that the weights and resistances of the
CHNN are equal to the coefficients in a spatially discret-
ized heat conduction equation. In fact, is the values of w

are similar to W when I = 0 and R =1.

2.5. Connectivity structure

Fig. 2a shows the basic CHNN connectivity circuit dia-
gram when all of the neuron weights are known. In prac-
tice, this study considers the temperature distributions of
heat conduction models with boundary conditions and
with some of the connective weight strengths equal to zero.
Therefore, the basic CHNN circuit diagram shown in
Fig. 2a can be modified to the form presented in Fig. 2b.
In this figure, the function f(t) represents the conversion
between the temperature and the corresponding voltage,
and the neuron weight strengths, W, are the inverse of
the resistance values of the CHNN. In practice, the temper-
ature distribution weight strengths are variable. Therefore,
during the simulation process, a voltage converter is used
to control the current source in order to introduce non-
linear weight strengths throughout the circuit.

3. Formulation for inverse problems

3.1. Mapping neural network architecture

A feed forward network with n-input units and m-out-
put units can perform mapping from an n-dimensional
cube Rn to an m-dimensional cube Rm. According to the
original theorem proposed by Kolmogorov [30]: For all

n P 2, and for any continuous real function g of n variables
in the domain [0, 1], g: [0,1]n ? R, there exist 2n + 1 contin-

uous, monotonously increasing one-variable functions in

[0,1], by which g can be reconstructed according to the

following equation:

gðuÞ ¼
X2nþ1

j¼1

Wj

Xn

i¼1

/ijðuiÞ
 !

; ð6Þ



Fig. 2b. Modified Hopfield neural network connectivity circuit diagram for heat conduction temperature profiles.
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where Wj are continuous functions with one variable. Many
authors have attempted to improve this theorem since its
original formulation, most commonly by replacing /ij with
biuj, where bi is a constant. Therefore, Eq. (6) can be
rewritten as

gðuÞ ¼
X2nþ1

j¼1

Wj

Xn

i¼1

biujðuiÞ
 !

: ð7Þ

Eq. (7) corresponds to a three-layered feed forward net-
work architecture with a single output. Based on the theo-
retical foundation above, and using a more complex proof
process [31], the following theorem can be obtained:

Let u(u) be a non-constant, bounded and monotonously
increasing continuous function. There exist an integer
k and sets of real constants ci, hi and wij, where (i =
1,2, . . . ,k), (j = 1,2, . . . ,n) such that the expression:

ĝðu1; u2; . . . ; unÞ ¼
Xk

i¼1

ciu
Xn

j¼1

wijuj � hi

 !
ð8Þ

can be defined to meet

max jgðu1; u2; . . . ; unÞ � ĝðu1; u2; . . . ; unÞj < e; ð9Þ
where wij corresponds to the neuron weight. From the
theoretical description above, for the condition e > 0, there
exists a three-layered feedforward network in which the
activation function of the hidden layer is u(u). The activa-
tion function of the input layer is non-linear, while that of
the output layer is linear, and the three-layered feed for-
ward network given in Eq. (8) satisfies Eq. (9). The theorem
presented above provides the foundation for applying the
BPN network to the solution of IHCPs.

3.2. Back propagation neural network

Fig. 3 illustrates a general BPN network. As shown, this
network is a feed forward, fully connected hierarchical M-
layered network consisting of an input layer, M-2 hidden
layers and an output layer. If the kth unit in the Mth layer
is denoted by (M,k), the state variable uM

k for this unit and
its output signal yn

k to the units in the next layer (M + 1, k)
can be written as follows:

uM
k ¼

X
k

ðwM ;M�1
k;j uM�1

j þ hM
k Þ; ð10Þ

yM
k ¼ uM

k ðuM
k Þ: ð11Þ

Here, wM ;M�1
k;j is the connection strength between units

(M,k) and (M � 1, j), and hM
k and uM

k ð�Þ are the bias and
activation functions of unit (M,k), respectively. The output
signal yM

k is transmitted to all units in the next (M + 1)th
layer.

In the current study, the BPN network is used to solve
various IHCPs. The input parameters, u0 ¼ ðu0

1; u
0
2; . . .Þ,

to the neural network are the temperature data at specified
points in the interior of the object of interest, while the out-
puts of the network, yM ¼ ðyM

1 ; y
M
2 ; . . .Þ, are parameters

relating to the boundary conditions, e.g. the heat flux.
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Fig. 3. Structure of multilayered neural network.
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3.3. Formulation modes of training

Using a BPN network to solve IHCPs involves two basic
stages, a learning stage and a recalling stage. The learning
process is a supervised learning process which uses a train-
ing model and a set of target output values from the prob-
lem domain. If the training data set fully covers the
problem space and training is successfully completed, in
the recalling stage, the neural network can provide an
appropriate output for any arbitrary unknown input. The
goal of the training process is to modify the connection
strengths wM ;M�1

k;j and the biases hM
k which characterize the

BPN network such that the actual output vector yM ¼
ðyM

1 ; y
M
2 ; . . .Þ approximates the target output vector, dM ¼

ðdM
1 ; d

M
2 ; . . .Þ as closely as possible.

Conventionally, a BPN algorithm iteratively adjusts the
link-weights using the steepest descent technique. However,
the resulting convergence is inherently slow and the solu-
tion may become trapped at local minima. Since the intro-
duction of the original BPN learning algorithm, extensive
research has been performed aimed at developing methods
to accelerate the convergence rate. This research can be
classified into two basic categories. The first category
involves the development of ad hoc techniques [19], and
includes such approaches as varying the learning rate or
using momentum and rescaling variables, while the second
category comprises standard numerical optimization tech-
niques [21–24]. All of these techniques successfully improve
the performance of the traditional BPN, and the choice of
an appropriate algorithm depends on the target problem’s
complexity, the volume of training data available, the net-
work size and the permissible error tolerance.

3.4. Improving generalization

When the volume of the available training data is
limited or fixed, the network generalization capability is
governed by the network structure. If the neural network
structure is smaller than the available training data, the
opportunity for over-training is small. When employing
networks to solve a certain class of problem, including
IHCPs, establishing a suitable neural network structure
(in particular, establishing the number of neurons in the
hidden layer) is challenging. A regularization method can
be used to improve the neural network generalization capa-
bility. In regularization methods, a regularization term is
added to the sum of the squared errors term of the objec-
tive function, i.e. the network objective function is modified
to the following form:

F ðwÞ ¼ n1Ed þ n2Ew; ð12Þ

where w is the network weight, Ed ¼
P

jðyj � djÞ2 is the
sum of the squared errors of the output, dj and yj are the
desired output and the actual output, respectively, Ew ¼P

jw
2
j is the regularization term, and n1 and n2 are the

objective function parameters. Adding the regularization
term to the objective function enables the smallest connec-
tion weights to approach a value of zero. This improves the
network’s fit and precision and reduces the network com-
plexity, thereby obtaining an improved generalization.

The regularization coefficients n1 and n2 in Eq. (12) affect
the training result. If n2 is oversized, network overfitting can
result. Conversely, if n1 is oversized, underfitting may occur.
The Bayesian regularization method selects appropriate
values of n1 and n2 values in the network training stage,
regards the weight value as a random variable, and assumes
that the prior probability of the training data set d, and the
weight collection set w obey the Gaussian distribution.
Based on the Bayesian framework [32], the posterior prob-
ability is then maximized to obtain the minimized regular-
ized objective function F(w) at points n1 and n2, i.e.

nMP
1 ¼ c

2EwðwMPÞ and nMP
2 ¼ N � c

2EdðwMPÞ ; ð13Þ

where c ¼ k � nMP
1 TraceðHMPÞ�1, in which k is the total

number of weights in the network, H = n2$
2Ed(wMP) +



Fig. 4. Flow chart of forward and inverse neural network analysis.
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n1$
2Ew(wMP), N is the product of the number of output

neurons and the training data number, and c is the number
of parameters used in the neural network. If c approaches
k, the network scale is insufficiently large and the number
of hidden layers must be increased. If the network is over
a certain scale, the change value of c becomes very small.

Bayesian regularization network training is a recursive
process. Initially, with values of n1 and n2, network training
is performed using the Levenberg–Marquardt (LM) algo-
rithm to obtain the minimized F(w) point, i.e. wMP. Eq.
(13) is then used to update the values of n1 and n2, and
the LM algorithm is applied once again to train the net-
work. This process is repeated recursively until the pre-
scribed tolerance is obtained [33].

4. Framework of forward and inverse techniques

This study considers both one- and two-dimensional
transient heat conduction problems. The test cases consider
boundary heat fluxes with a variety of simple and complex
waveforms. The solutions of the forward heat conduction
problems obtained using the CHNN method are used to
estimate the temperature distribution. Initially this study
considers three standard heat conduction problems, namely
a ‘‘triangular” initial temperature profile in a bar, a heat flux
varying over time with a triangular profile, and a surface
subjected to a constant flux. In the first two cases, the
CHNN results are compared to the exact solutions in order
to verify the accuracy of the proposed CHNN scheme, while
in the third case, the CHNN solutions are compared with
the results of the finite difference method. Having confirmed
the accuracy of the CHNN method in solving conventional
forward heat conduction problems, it is then applied to the
solution of three rather more complicated time-varying
boundary heat flux problems. When using the BPN to solve
the current IHCPs, the three-layered BPN applied to the
one-dimensional IHCP has six nodes in the input layer, four
nodes in the hidden layer and one node in the output layer.
Meanwhile, the BPN used to solve the two-dimensional
IHCP has six nodes in the input layer, 15 nodes in the hid-
den layer and two nodes in the output layer. Regarding the
activation functions of the neural network, the sigmoid
function is chosen for the hidden layer and a linear function
is used for the output layer.

Solving the forward heat conduction problem yields tem-
perature data for a number of specified points inside the
domain. To reflect actual engineering problems, a measure-
ment noise of 10E�4 is added to the results of the temper-
ature data to use as inputs to the BPN. Fig. 4 illustrates the
forward and inverse neural network analysis procedure
conducted in this study. Respective pairs of the boundary
conditions and the temperature data calculated at specified
points in the domain by the CHNN method were used to
train the neural network using various training methods.
After the training process had been completed, the forward
heat conduction problems were solved for arbitrarily
assigned boundary conditions to obtain temperature distri-
butions in the domain. The boundary conditions for a given
set of calculated temperature data were then predicted using
the trained neural network. The predicted boundary condi-
tions were then compared with the arbitrarily assigned
boundary conditions in the previous step to confirm the
validity of the proposed neural network analysis.

In this study, the accuracy of the network outputs
obtained using the different training methods was evaluated
using the root mean square error (MSE) indicator, defined as

MSE ¼ ð1=nÞ
Xn

i¼1

ðymea
i � dexa

i Þ
2
; ð14Þ

where ymea is the neural network solution at time t, d exa is
the analytical solution or desired output for the same input
data at time t, and n is the number of measurements.
5. Results and discussion

5.1. Forward problems

In the first two cases, the CHNN results were compared to
the exact solutions to verify the accuracy of the proposed
CHNN scheme. In the third case, the solutions of the
CHNN scheme were compared to those of the FDM
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method. Having confirmed its performance in solving stan-
dard heat conduction problems, the CHNN method was
then applied to three rather more complicated time-varying
boundary heat flux problems. Again, the solutions of the
CHNN scheme and the FDM method were compared.

The six heat flux profiles considered in the current sim-
ulations were as follows:

Case 1: A triangular temperature profile within a later-
ally insulated bar of length L, whose ends are maintained
at zero temperature. The initial temperature is given by
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2
;
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�
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The exact solution is given by [34]

T ðx; tÞ ¼ 4L
p2

sin
px
L

exp � cp
L

� �2

t
� �(
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9
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� � � �
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: ð15bÞ
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Table 1
Exact solution of temperatures at insulated surface x+ = 0 of finite plate
heated with triangular time-varying heat flux shown in Fig. 5b

Dt+ = 0.06

t+ T(0, t+) t+ T(0, t+) t+ T(0, t+)

0.06 0.011056 0.66 0.393497 1.26 0.371417
0.12 0.031271 0.72 0.414453 1.32 0.366259
0.18 0.057453 0.78 0.427080 1.38 0.363457
0.24 0.088499 0.84 0.433584 1.44 0.361912
0.30 0.123841 0.90 0.435099 1.50 0.361057
0.36 0.163166 0.96 0.432248 1.56 0.360585
0.42 0.206303 1.02 0.425373
0.48 0.253158 1.08 0.414663
0.54 0.303677 1.14 0.400223
0.60 0.357828 1.20 0.382112
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Case 2: Prior to t+ = 0, the heat flux is zero. When t+

lies between zero and 0.6, the surface flux, q, increases lin-
early with time. For t+ > 0.6, the flux decreases linearly to
zero at t+ = 1.2 and remains at zero thereafter. The exact
solutions for the temperatures at x+ = 0 and x+ = 1 for
the linear heat flux are given by [1, pp. 169–329]:

/þð0; tþÞ¼ 1

2
ðtþÞ2þ1

3
tþ� 1

45
þ 2

p4

X1
n¼1

1

n4
expð�p2n2tþÞ;

ð16aÞ

/þð1; tþÞ¼ 1

2
ðtþÞ2�1

6
tþþ 7

360
þ 2

p4

X1
n¼1

ð�1Þn

n4
expð�p2n2tþÞ;

ð16bÞ

Tþðx; tþÞ¼

/þðxþ; tþÞ; 0< tþ6 0:6;

/þðxþ; tþÞ�2/þðxþ; tþ�0:6Þ; 0:6< tþ6 1:2;

/þðxþ; tþÞ�2/þðxþ; tþ�0:6Þþ/þðxþ; tþ�1:2Þ;
tþ> 1:2;

8>>><>>>:
ð16cÞ

where

Tþ � T � T 0

qL=k
; tþ � at

L2
; xþ � x

L
: ð16dÞ

Case 3: The initial temperature of a finite solid cylinder
is zero and its surface is subjected to a constant flux. The
temperature distribution in the cylinder is given by [35,1,
pp. 17–18]

Tþa ðrþ; tþa Þ ¼ 2tþa þ
1

2
ðrþÞ2 � 1

4
� 2

X1
n¼1

e�b2
ntþa

J 0ðrþbnÞ
b2

nJ 0ðbnÞ
;

ð17aÞ
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Fig. 6a. Comparison of CHNN and FDM resul
where bn, n = 1,2, . . ., are the positive roots of the Bessel
function,

J 1ðbnÞ ¼ 0; ð17bÞ

a is the cylinder radius, and

Tþa ðrþ; tþa Þ �
½T ðr; tÞ � T 0�k

qca
; tþa �

at
a2
; rþ � r

a
: ð17cÞ

Case 4: The time-varying flux has a step profile followed
by a ramp profile (step-ramp profile) from t = 0 to tf = 6
with a time interval of 0.01, i.e.

qðtÞ ¼
0; 0 < t 6 1;

1; 1 < t 6 3;
1

750
t � 0:2; 3 < t 6 6:

8><>: ð18Þ

Case 5: The time-varying flux has a triangular profile
followed by a sine profile (triangular–sine profile) from
t = 0 to tf = 6 with a time interval of 0.01, i.e.
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Fig. 6b. Comparison of CHNN and FDM results for temperature with triangular–sine heat flux.
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qðtÞ ¼

0:3; 0:0 < t 6 1:0;

0:007t � 0:4; 1:0 < t 6 2:0;

�0:005t þ 2; 2:0 < t 6 3:0;

0:5; 3:0 < t 6 3:3;

0:5ð1þ sin p
150

tÞ
	 


; 3:3 < t 6 5:8;

0:3; 5:8 < t 6 6:0:

8>>>>>>>><>>>>>>>>:
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Case 6: The time-varying flux has a sine profile followed
by a second sine profile (sine–sine profile) from t = 0 to
tf = 6 with a time interval of 0.01, i.e.

qðtÞ ¼
sinð2pt=250Þ; 0 < t 6 3;

0:5 sinð2pt=250Þ þ 0:5 sinð2pt=25Þ; 3 < t 6 6:

�
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5.1.1. One-dimensional forward heat conduction problem

Figs. 5a and 5b compare the exact solutions and the
CHNN solutions for Cases 1 and 2, respectively. The
MSE for the CHNN results of Case 1 is 1.61E�06. For
Case 2, the MSE at x = 0 is 1.32E�08 while at x = 1, the
MSE is 1E�09. Eq. (16c) provides the numerical values
of T(0, t+) for the case of a triangular time-varying heat
flux. The corresponding results are presented in Table 1
for dt+ = 0.06.

In Case 3, the initial temperature of the finite solid cyl-
inder is zero and the surface is subjected to a constant flux.
In this study, the resulting temperature distribution was
solved using both the CHNN scheme and the FDM numer-
Fig. 8. Comparison of CHNN and FDM results for temperature

Fig. 9. Comparison of CHNN and FDM results for temperature for
ical technique. The MSE results for the two methods at
r = 0 were found to be 5.23E�08 for the CHNN method
and 4.27E�07 for the FDM method.

From these results, it is clear that the CHNN method
provides accurate solutions for the temperature distribu-
tion in one-dimensional heat conduction problems, irre-
spective of the initial temperature or the variation of the
heat flux at the boundary over time. The results of Cases
1 and 2 show that the solutions of the CHNN scheme
are in good agreement with the exact results. Furthermore,
the results of Case 3 indicate that the performance of the
CHNN method is slightly better than that of the FDM
approach. Having confirmed the capability of the pro-
for step-ramp heat flux at x = 0 and triangular–sine at y = 0.

sine–sine heat flux at x = 0 and triangular–sine heat flux at y = 0.
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posed CHNN method in solving the standard heat con-
duction problems of Cases 1–3, the CHNN model was
then applied to a series of one- and two-dimensional heat
conduction problems with more complicated heat flux
profiles.

Eqs. (18)–(20) describe the three time-varying boundary
heat fluxes considered in the second set of simulations. The
one-dimensional cylindrical temperature history results for
the insulated surface and at specified inner points within
the cylinder are presented in Figs. 6a, 6b and 7 (Cases 4–
6 above).
Fig. 10. Comparison of CHNN and FDM results for temperature f

Fig. 11a. Comparison of convergence performa
5.1.2. Two-dimensional forward heat conduction problems

For the two-dimensional cases (Figs. 8–10), the input
heat flux profiles were specified as follows:

(1) A step-ramp heat flux at x = 0 (described by Eq. (18))
and a triangular–sine heat flux at y = 0 (described by
Eq. (19)). The corresponding results are illustrated in
Fig. 8.

(2) A sine–sine heat flux at x = 0 (described by Eq. (20)) and
a triangular–sine heat flux at y = 0 (described by Eq.
(19)). The corresponding results are illustrated in Fig. 9.
or sine–sine heat flux at x = 0 and step-ramp heat flux at y = 0.

nce of eight training algorithms for Case 4.



Fig. 11b. Comparison convergence performance of eight training algorithms for Type III.
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(3) A sine–sine heat flux at x = 0 (described by Eq. (20)
and a step-ramp heat flux at y = 0 (described by
Eq. (18)). The corresponding results are illustrated
in Fig. 10.

Similarly, the temperature data calculated by the
CHNN method and the FDM scheme at x = 3 and y = 3
for the two-dimensional cases are plotted in Figs. 8–10,
respectively. In general, the simulation results obtained
by the two methods are in good agreement. In the second
set of simulations (i.e. Figs. 6a, 6b and 7–10), the MSE
value discrepancy between the CHNN and FDM solutions
varies from 0.1% (Figs. 6a, 6b and 7) to 0.3% Figs. 8–10.
This compares to an MSE value of E�06 between the
CHNN results and the exact solutions in Cases 1 and 2
and an MSE value of E�07 between the CHNN/FDM
solutions and the exact solution in Case 1.

On the evidence of the results obtained from the first
three cases (i.e. the standard heat conduction cases), in
Table 2
Performance of eight training algorithms in terms of iterations and MSE for

Algorithm Type

Case 4 Case 5

Iterations MSE Iterations

QNB 211 0.000981 216
LMB 56 0.000816 35
CRB 3000 0.001020 3000
SCB 964 0.000997 3000
CBP 500 0.000999 3000
OSB 3000 0.001283 2105
GMB 3000 0.008931 3000
CBF 3000 0.001798 442
which the results (Figs. 5a, 5b and Table 1) of the CHNN
method are compared with the exact solutions and those of
the FDM scheme, it can be inferred that the proposed
method can efficiently compute the temperature distribu-
tion both at a heated surface and at an insulated surface.

5.2. Inverse heat conduction problems

5.2.1. One-dimensional

In this study, training data for the BPN network were pre-
pared by solving the forward problems using the CHNN
method under the boundary conditions of an arbitrarily
assigned heat flux, q. The CHNN Eqs. (1a)–(1d), (2b)–(2d)
were discretized. In the discretization procedure, the calcula-
tion domain was divided into six nodal points, values of the
heat flux, q, and the temperature distribution, T, were pre-
pared, and the value of the time constant was generated in
the range 0–6 s. A total of 601 sets of time-history tempera-
ture data were obtained for each of the heat fluxes of Cases
one-dimensional cases

Case 6

MSE Iterations MSE

0.001000 3000 0.003661
0.000972 3000 0.002882
0.001880 3000 0.034049
0.000998 3000 0.024123
0.001119 355 0.038943
0.000999 3000 0.035751
0.005648 3000 0.059163
0.000999 472 0.040512
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4–6 shown in Figs. 6a and 6b (top left) and Fig. 7 (bottom
right), respectively. These data were then used as input to
the inverse problems. A total of 2404 sets of temperature his-
tory data were then calculated by the CHNN method for
Fig. 12. Estimated heat flux of one-dimensional IHCP,
four different measurement positions, as shown in Figs. 6a,
6b, 7 and 8 by the circular symbol data. This temperature
data were then used to train the BPN network designed to
solve the current IHCPs. In the IHCP (recalling) stage for
Top: Case 4, Middle: Case 5 and Bottom: Case 6.
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these three cases, a total of 200 sets of temperature history
data (corresponding to four different measurement posi-
tions) were calculated by the CHNN method.

The neural network assumed the following parameters:
four units in the hidden layer, a learning rate of 0.0001, a
momentum rate of 0.09, 3000 convergence iterations, and
a target error of 0.0001. Network training was performed
using eight different algorithms, i.e. QNB, LMB, CRB,
SCB, CBP, OSB, GMB, CBF, and Bayesian regularization.
Fig. 11a and Table 2 compare the convergence characteris-
tics of the eight training algorithms when applied to Case 4.
Note that the results for Cases 5 and 6 are not shown in
Fig. 11a because the convergence rates are virtually identi-
cal to those shown in Case 4. From Table 2, it is clear that
the QNB and LMB algorithms yield a superior convergence
performance and that the LMB scheme yields the minimum
MSE for Cases 4 and 5. Furthermore, the LMB algorithm
also provides the best convergence performance for Case
6. However, it nevertheless fails to achieve the target error
of 0.0001, and the number of iterations required is higher.
Table 3
Performance of eight training algorithms in terms of iterations and MSE for

Algorithm Type

Case 4 (x = 0) Case 6

Case 5 (y = 0) Case 4

Iteration MSE Iteratio

QNB 231 0.000999 3000
LMB 56 0.000999 1610
CRB 1252 0.001000 3000
SCB 3000 0.006254 3000
CBP 1266 0.001000 1805
OSB 3000 0.001041 2500
GMB 3000 0.006352 3000
CBF 1577 0.000999 2193
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Fig. 13. Estimated heat flux of two-dimensiona
Having evaluated the performance of each of the eight
training algorithms, the best method, i.e. the LMB algo-
rithm, was employed to train the network and the results
compared with those obtained from a network trained
using the Bayesian regularization scheme. The MSE values
of the outputs obtained from the Bayesian regularization-
trained network for Cases 4–6 were found to be 0.0018%,
0.01%, and 0.17%, respectively, while the MSE values
obtained from the LMB-trained network for the same cases
were 0.08%, 0.09%, and 0.29%, respectively. Therefore,
although the Bayesian network requires more iteration in
its solution procedure, its results are more accurate.
Fig. 12 shows the heat flux profiles of Cases 4–6, denoted
by cross symbols, which were used as the boundary condi-
tions for the forward problem in preparing the input data
for the neural network. The calculated temperature data
were input to a neural network fully trained by the Bayes-
ian generalization method. The output from the trained
neural network, denoted by the circular symbols, was then
compared with the desired output, as shown in Fig. 12.
two-dimensional cases

(x = 0) Case 6 (x = 0)

(y = 0) Case 5 (y = 0)

n MSE Iteration MSE

0.001294 3000 0.001174
0.000999 409 0.000997
0.020345 3000 0.022617
0.004101 3000 0.005028
0.006292 1606 0.007411
0.012028 3000 0.019309
0.032036 3000 0.040580
0.007269 1510 0.014962

l IHCP, Case 4 (x = 0) and Case 5 (y = 0).
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5.2.2. Two-dimensional

The training data for the neural network were prepared
by solving the forward problems using the CHNN under
the boundary conditions of arbitrarily assigned heat fluxes
q1(x = 0) and q2(y = 0). The CHNN Eqs. ((3a)–(3f)) were
discretized. For the two-dimensional cases, the input heat
flux profiles were as follows: Type I: a step-ramp heat flux
at x = 0 (described by Eq. (18)) and a triangular–sine heat
flux at y = 0 (described by Eq. (19)), Type II: a sine–sine
heat flux at x = 0 (described by Eq. (20)) and a triangu-
lar–sine heat flux at y = 0 (described by Eq. (19)), and Type
III: a sine–sine heat flux at x = 0 (described by Eq. (20)) and
a step-ramp heat flux at y = 0 (described by Eq. (18)). As
before, the calculation domain was divided into six nodal
points at x = 0 and y = 0, respectively, temperature distri-
butions, T, were prepared, and the time constant was gener-
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Fig. 14. Estimated heat flux of two-dimensiona
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Fig. 15. Estimated heat flux of two-dimensiona
ated in the range 0–6 s. After solving the forward heat
conduction problem with these boundary conditions, a total
of 2404 sets of temperature data were obtained at four
different measurement points. The training data were then
prepared by combining the temperature data at these four
points with the given boundary conditions of q1 and q2.

The neural network was trained using the training data
prepared above and the same eight training algorithms as
used in the one-dimensional case. However, in this case,
the neural network had a 6–15–2 framework. The learning
rate parameter was 0.0001, the momentum rate was 0.09,
the number of iterations in the solution procedure was
3000, and the target error was 0.0001. Fig. 11b demon-
strates the convergence characteristics of these methods
for the Type III input heat flux profile. Note that the results
for Types I and II are not presented in this figure because
l IHCP, Case 6 (x = 0) and Case 5 (y = 0).

l IHCP, Case 6 (x = 0) and Case 4 (y = 0).
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their convergence speeds are virtually the same as those of
Case 6 (‘‘Type III”). Table 3 lists the convergence character-
istics of the eight training algorithms. It is apparent that the
LMB algorithm consistently achieves the best performance,
both in terms of the convergence speed and the MSE error.

Accordingly, simulations for the Types I, II, and III heat
influx profiles were performed using a network trained
using the LMB algorithm. The results were then compared
with those obtained from a network trained using the
Bayesian regularization scheme. The MSE values obtained
from the BPN trained using the Bayesian regularization
scheme were found to be 0.00091%, 0.0079%, and 0.026%
for the Type I, Type II, and Type III profiles, respectively.
The Bayesian method yields a better convergence than the
LMB, but requires more iteration. Figs. 13–15 shows the
Types I–III heat flux profiles, denoted by cross symbols,
used as the boundary conditions for the forward problem
in preparing the input data for the neural network. The cal-
culated temperature data were input to the neural network
trained by the Bayesian generalization method. The output
from the trained neural network, denoted by circular sym-
bols, was then compared with the desired output, as shown
in Figs. 13–15.
6. Conclusion

This paper has applied the continuous-time analogue
Hopfield neural network (CHNN) to solve time-varying
forward heat conduction problems. The relationship
between the CHNN synaptic connection weights and the
governing equations of the one- and two-dimensional heat
conduction problems has been established. A neural net-
work algorithm for inverse heat conduction problems
(IHCPs) has been proposed to predict the unknown param-
eters in the boundary conditions. The forward simulation
results have confirmed that the proposed CHNN scheme
can successfully solve the temperature fields of both one-
and two-dimensional heat conduction problems. Two
inverse heat conduction problems have been considered
to test the validity of the proposed method using a back-
propagation neural network. The results have shown that
the Bayesian method provides the best training perfor-
mance. To obtain reasonable results, the neural network
should be fully trained with a set of training data which
covers the complete anticipated range of the unknown
inputs. In conclusion, the method proposed in this study
provides an accurate and convenient technique for the
real-time determination of heat conduction transient state
temperature distributions. The test results have shown that
the proposed method is capable of predicting the unknown
parameters in IHCPs with an acceptance error tolerance.
Appendix A

This study employs the central-difference approximation
for the space derivative to formulate the relationship
between the temperature and the boundary conditions.
Using this approach, Eq. (3a) is obtained as

oT i;j

ot
¼ T iþ1�jðtÞ�2T i;jðtÞþT i�1;jðtÞ

Dx2
þT i�jþ1ðtÞ�2T i;jðtÞþT i;j�1ðtÞ

Dy2

for i¼ 1;2; . . . ;M ; j¼ 1;2; . . . ;N ; and M ;N > 1;

ðA1Þ

where M and N are the total number of spatial nodes in the
x- and y-directions, respectively, and Dx = xu/M and
Dy = yu/N are the space intervals in the x- and y-directions,
respectively.

Rearranging Eq. (A1), it can be shown that:

oT i;j

ot
¼
XN

j¼1

W ijðT j � T iÞ þ
XN

i¼1

W jiðT i � T jÞ: ðA2Þ

According to Eq. (A2), the difference between the temper-
ature of the ith neuron and its neighbor is multiplied by
Wi(i+1) = 1/Dx2 and Wi(i�1) = 1/Dx2, while the other ele-
ments in the W matrix are equal to zero. Similarly, the dif-
ference between the temperature of the jth neuron and
its neighbor is multiplied by Wj(j+1) = 1/Dy2 and Wj(j�1) =
1/Dy2, while the other elements in the W matrix are equal
to zero.

Preceding sections have derived heat conduction models
(Eq. (A1)) and the CHNN differential equations (Eqs. (4a)
and (4b)). In Eq. (4a), C is assumed to be constant and the
CHNN weights, w, are similar to W, when I = 0 and
R =1. In other words, Eq. (4a) is similar to Eq. (A1).
The current numeric simulations use discrete time steps,
and Eq. (4a) can be rewritten with a neuron internal state
Ti as follows:

T tþ1
i ¼ T t

i þ
Xn

j¼1
i6¼j

½W ij
bT t

i�dt for i ¼ 1; 2; . . . ; n; ðA3Þ

where bT i is the difference between the temperature of the
ith neuron and its neighbour and dt is the interval time.

At the boundary of x = 1, T0,j(t) is solved from Eq. (3c)
as

oT 1;jðtÞ
or

¼ T 2;jðtÞ � T 0;jðtÞ
2Dx

¼ �q1ðtÞ:

This yields:

T 0;jðtÞ ¼ T 2;jðtÞ þ 2Dxq1ðtÞ: ðA4Þ

Similarly, the temperature at the boundaries of y = 1,
x = xu and y = yu can be solved using Eqs. ((3d)–(3f)),
respectively, i.e.

T i;0ðtÞ ¼ T i;2ðtÞ; ðA5Þ
T Mþ1;jðtÞ ¼ T M�1;jðtÞ; ðA6Þ
T i;Nþ1ðtÞ ¼ T i;N�1ðtÞ þ 2Dyq2ðtÞ: ðA7Þ

From Eqs. (A2) and (A4)–(A7), the continuous-time state
can be expressed in the following matrix form:

_TðtÞ ¼WTðtÞ þWqðtÞ; ðA8Þ



S. Deng, Y. Hwang / International Journal of Heat and Mass Transfer 49 (2006) 4732–4750 4749
where W is the neural network connectivity strength ma-
trix. This matrix is of the form (M � N) � (M � N), and
is given by

W ¼

�w1 �w3 o o o � � � o

�w2 �w1 �w2 o o � � � o

o �w2 �w1 �w2 o � � � o

..

. . .
. ..

.

o � � � o �w2 �w1 �w2 o

o � � � o o �w2 �w1 �w2

o � � � o o o �w3 �w1

26666666666664

37777777777775
; ðA9Þ

in which

�w1 ¼

0 2=Dy2 0 0 0 � � � 0

1=Dy2 0 1=Dy2 0 0 � � � 0

0 1=Dy2 0 1=Dy2 0 � � � 0

..

. . .
. ..

.

0 � � � 0 1=Dy2 0 1=Dy2 0

0 � � � 0 0 1=Dy2 0 1=Dy2

0 � � � 0 0 0 2=Dy2 0

26666666666664

37777777777775
ðA10Þ
T1ðtÞ ¼

0 T 1;1 � T 1;2 0 � � � 0

T 1;2 � T 1;1 0 T 1;2 � T 1;3
..
.

0 T 1;3 � T 1;2 0 0

0 0 T 1;4 � T 1;3
. .

.
T 1;N�3 � T 1

0 0 0 0

..

. ..
. ..

.
T 1;N�1 � T 1

0 0 0 � � � 0

266666666666666666664
..
.

TMðtÞ ¼

0 T M ;1 � T M ;2 0 � � �

T M ;2 � T M ;1 0 T M ;2 � T M ;3

0 T M ;3 � T M ;2 0

0 0 T M ;4 � T M ;3
. .

.
T M ;N�3

0 0 0

..

. ..
. ..

.
T M ;N�1

0 0 0 � � �

266666666666666666664
and
�w2 ¼

1=Dx2 0 0 0 0 � � � 0

0 1=Dx2 0 0 0 � � � 0

0 0 1=Dx2 0 0 � � � 0

..

. . .
. ..

.

0 � � � 0 0 1=Dx2 0 0

0 � � � 0 0 0 1=Dx2 0

0 � � � 0 0 0 0 1=Dx2

26666666666666666664

37777777777777777775
ðA11Þ
and �w3 ¼ 2�w2. The sub-matrices �w1, �w2, �w3, and o are
M � N matrices. Sub-matrix o is a null sub-matrix. The
state matrix T(t) is given by
T ðtÞ ¼ ½T1ðtÞ T2ðtÞ � � � TM�1ðtÞ TMðtÞ �T ðA12Þ
where:
0 0

..

. ..
.

0 0

;N�2 0 0

T 1;N�2 � T 1;N�1 0

;N�2 0 T 1;N�1 � T 1;N

T 1;N � T 1;N�1 0

377777777777777777775

ðA13Þ

0 0 0

..

. ..
. ..

.

0 0 0

� T M ;N�2 0 0

0 T M ;N�2 � T M ;N�1 0

� T M ;N�2 0 T M ;N�1 � T M ;N

0 T M ;N � T M ;N�1 0

377777777777777777775

: ðA14Þ
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The input matrix W is of the form (M � N) � 2, and is
given by

W ¼ ½W1 W2 � � � W2 �T; ðA15Þ

where the sub-matrices W1 and W2 are both of the form
N � 2 and are given by

W1 ¼

2=Dx 0
2=Dx 0

..

. ..
.

2=Dx 0
2=Dx 2=Dy

2666664

3777775 ðA16Þ

and

W2 ¼

0 0
0 0
..
. ..

.

0 0
0 2=Dy

26664
37775: ðA17Þ

The input matrix q(t) is of the form 2 � 1, and is given by

qðtÞ ¼ ½q1ðtÞ q2ðtÞ �
T
: ðA18Þ
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